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Global and Local Virtual Metrology Models
for a Plasma Etch Process
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Abstract—Virtual metrology (VM) is the estimation of metrol-
ogy variables that may be expensive or difficult to measure using
readily available process information. This paper investigates the
application of global and local VM schemes to a data set recorded
from an industrial plasma etch chamber. Windowed VM models
are shown to be the most accurate local VM scheme, capable
of producing useful estimates of plasma etch rates over multiple
chamber maintenance events and many thousands of wafers. Par-
tial least-squares regression, artificial neural networks, and Gaus-
sian process regression are investigated as candidate modeling
techniques, with windowed Gaussian process regression models
providing the most accurate results for the data set investigated.

Index Terms—Gaussian process regression, local modeling,
neural network applications, plasma etch, virtual metrology
(VM).

I. Introduction

V IRTUAL metrology (VM) is an active area of research
in semiconductor manufacture [1]. Traditionally, manu-

facturing processes such as plasma etch are monitored using
statistical process control methodologies with few measure-
ments and large metrology delays. Such monitoring systems
can result in wafer scraps due to slow response times and they
do not provide the immediate feedback capability required for
advanced process control (APC) of processing tools. APC is
seen as a core enabling technology required for the continued
advancement of the semiconductor industry [2], and fab-
wide APC and VM schemes capable of increasing factory
throughput, reducing wafer scraps, cutting production costs,
and facilitating automated wafer-2-wafer control have been
investigated [2]–[4].

Fab-wide APC systems cannot be implemented without the
development of accurate VM models for each process in the
manufacturing cycle. Plasma etch remains one of the most
challenging modeling exercises [5]. While the etch process
itself is quite complex, modeling of the process is further
complicated by multistep recipes with changing chemistries,
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chamber conditioning effects, shifts in process characteristics
due to preventative maintenance (PM) operations, and lim-
ited downstream metrology with which to validate modeling
results. A complete review of the semiconductor etch VM
literature is found in [6].

VM relies on process data recorded from etch processing
tools to generate estimates of process outputs. Chamber-related
process data such as temperature, pressure, gas flows, and
power are typically collected from etch chambers using in-built
sensors. Such data has been used by several authors to create
empirical input-output models relating chamber inputs to etch
rates, etch bias, and uniformity measures [7]. Additional data
can be collected by installing more sensors on the etch
chamber. Optical emission spectroscopy is one of the most
commonly used noninvasive tools [8] providing information
on the chemical species active in plasmas. Plasma impedance
monitors (PIMs) analyze the electrical system of the chamber,
noninvasively providing information on the current, voltage,
and phase of the radio frequency energy applied to the
chamber electrodes. PIM signals have been shown to relate to
output variables such as etch rate [9] and etch end point [10].

With vast quantities of data available in fabrication plants,
the difficulty faced by manufacturers is the effective extraction
of useful information from the recorded variables. Variable
selection and data reduction techniques are essential to identify
key variables and to find useful correlations between recorded
variables and process outputs [8], [11].

The treatment of large data sets is a subject requiring
consideration by practitioners of VM in semiconductor manu-
facturing. The two paradigms investigated in this paper are
global models and local models. As defined here, global
models use all available training points to learn the behavior
of a system. Training is carried out once at initialization,
ideally using a training data that covers the full operational
range of the system; all further activity is assumed to operate
in the same regime. Local models, however, are models that
are trained using subsets of the available data. The subsets
can be determined from the full data set based on wafer
context information, time, or any other criteria. In this manner,
local models can provide more accurate estimates than global
models over certain operation regimes, while global models
may provide more general estimates but across the entire
system operating space. Multiple local models are typically
required to perform VM over a complete operating space,
thus incurring a small complexity overhead over their global
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counterparts. In this paper, partial least squares (PLS), artificial
neural networks (ANNs), and Gaussian process regression
(GPR) are compared as candidate VM modeling techniques
for global and local modeling of plasma etch rate.

The use of Gaussian processes (GPs) for regression and
classification is a relatively new concept. In 1996, Williams
and Rasmussen [12] successfully extended the use of GPs to
high dimension problems that have been traditionally tackled
using other modeling techniques such as neural networks
and decision trees [13]. GPR does not impose a specific
parametric structure on the underlying function being modeled
[14]; rather, the training data are used to discover the model
properties in a supervised manner.

GPR has several advantages over other modeling tech-
niques. Using GPR, useful models can be created from training
data sets with a relatively small number of training points, and
the analyst’s prior beliefs about the data can be encapsulated in
the choice of a covariance function. Because the model form
is not specified explicitly, both linear and nonlinear functions
can be approximated. Confidence intervals on predictions can
be easily evaluated since each prediction is given in the form
of a distribution. However, during the training procedure, GP
models require the inversion of covariance matrices, the size
of which is determined by the number of training data points.
For very large data sets, the computational demands of such
inversions may become an issue. To the best of the authors’
knowledge, this paper reports the first application of GPR to
semiconductor etch data, apart from preliminary explorations
previously reported in [15].

This paper is organized as follows. Section II describes
the modeling techniques used. Because it is rarely seen in
the semiconductor literature, particular focus is given to an
explanation of GPR. Section III describes the data available
for modeling while Sections IV and V discuss global and local
modeling results, respectively. Finally, conclusions are given
in Section VI.

II. Modeling Techniques

The estimated etch rate for wafer k, r̂(k), is given by

r̂(k) = f (u1(k), u2(k), . . . , um(k)) (1)

where u1(k), u2(k), . . . , um(k) are the measurements taken
from the chamber sensors during the processing of wafer k.
Static models are employed because etch rate measurements
are not performed on a uniform basis, precluding the use of a
time series model. It is assumed that the relationship between
the measurements and the plasma etch rate is time-invariant
during VM modeling.

A. PLS Regression

PLS is a statistical technique originally applied to the area
of chemometrics for statistical process modeling, and now reg-
ularly employed in the area of semiconductor manufacturing.
Unlike simpler linear regression techniques, PLS can construct
predictive models in the presence of collinear input variables.

PLS is related to another latent variable technique, principal
component analysis (PCA). Suppose that we begin with a data

matrix X ∈ Rn×p made up of n samples of p variables. PCA
[16] performs an eigenvalue decomposition of the covariance
matrix of the data matrix XT X to decompose X as the sum
of the outer product of the column vectors ti ∈ Rn×1 and
pi ∈ Rp×1, plus a residual matrix E [16]

X = t1p1
T + t2p2

T + · · · + tlpl
T + E (2)

= TPT + E (3)

where

T = [t1 t2 · · · tl], P = [p1 p2 · · · pl] (4)

l is the number of principal components, and E ∈ Rn×p is a
matrix of residuals. The vectors ti ∈ Rn×1 are the scores or
principal components, with T ∈ Rn×l the principal component
matrix, and the vectors pi ∈ Rp×1 are the loadings, where
P ∈ Rp×l is the loadings matrix. The principal components
are arranged in descending order, consistent with the amount
of variance explained in the original data set by each one.

In PLS analysis, a similar decomposition to PCA is simul-
taneously carried out on the output matrix Y such that

Y = UQT + F (5)

where Y = [y1, y2 · · · ym], Y ∈ Rn×m, is the output matrix
comprising n samples of m output variables, U ∈ Rn×h and
Q ∈ Rm×h are the Y -components and Y -loadings, respectively,
F ∈ Rn×m is the Y -residual matrix, and finally h is the
number of principal components used in the output matrix
decomposition. Although PLS is similar to PCA in that com-
ponents describing the data set are extracted using eigenvalue
decompositions, it has the advantage of being a supervised
technique that uses information in the output to create a model.

The X-components and Y -components are chosen so that
the relationship between successive pairs of principal com-
ponents is as strong as possible by manipulating the inner
relation, U = TB, where B is a diagonal matrix of weights op-
timized to maximize the covariance between the components
in U and T . An adjusted version of the noniterative partial least
squares algorithm, described in [17], can be used to calculate
PLS models. Predictions from PLS models are obtained using
the multivariate regression formula Ŷ = TBQT [18].

B. Artificial Neural Networks (ANNs)

ANNs have been applied extensively to the area of plasma
etch for fault detection [19], modeling [20], and control [21],
and have been shown to yield superior estimation accuracy
over statistical techniques for some data sets [22].

Here, multilayer perceptron (MLP) neural networks are
used where neurons are arranged in an input layer, a single
hidden layer, and an output layer. The neurons in each layer
receive weighted inputs from all neurons in the preceding
layer, calculate an output value using tan-sigmoid activation
functions and a preset bias value, and pass their outputs to
the next layer. This a feed-forward neural network. Through
experimentation, it is found that no significant improvement in
model accuracy is achieved through the use of multiple hidden
layers for the etch data set. To avoid limiting the output range,
linear output neurons are used.
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MLPs are trained by finding the optimal set of network
weights and biases that minimizes the sum squared error
(SSE), defined [23] as

SSE =
n∑

i=1

m∑
j=1

(yij − ŷij)2 (6)

where n is the number of samples in the training set, yij is the
desired value for output j at sample i, and ŷij is the estimated
value for output j at sample i.

Training is carried out by first initializing the network
weights randomly and then optimizing the weight values
using a training algorithm. Back propagation, for example,
gives an effective error measure for each neuron layer and
allows a gradient descent optimization routine to adjust the
weights and biases to achieve a minimum SSE. Higher order
optimization techniques, such as the second-order gradient
Broyden—Fletcher—Goldfarb—Shannon method [24] or the
Levenberg—Marquardt (LM) algorithm [25], are also em-
ployed. The models described in this paper were trained using
the LM method due to its fast convergence properties [26].

In all of the ANN models created in this paper, ANNs
were optimized in a number of ways. First, the number of
hidden neurons was varied from 5 to 25 neurons. Second,
for each network structure, ten random weight initializations
are tested in an attempt to ensure that the optimization routine
finds the global minimum error solution. The network structure
with the lowest validation error, which is a good measure
of generalization capability, across both variations in network
topology and training step number, is retained.

C. GP Regression

A GP can be viewed as a collection of random vari-
ables f (xi) with joint multivariate Gaussian distribution
f (x1), f (x2), · · · , f (xn) ∼ N(0, �), where �ij gives the value
of the covariance between f (xi) and f (xj), and is a function
of the inputs xi and xj , �ij = k(xi, xj) [27]. For the purposes
of this discussion, a 1-D input–output process is assumed.

Gaussian process models fit naturally into the Bayesian
modeling framework where, instead of parameterizing the
model function f (x), a Gaussian prior is placed on the range of
possible functions that could represent the mapping of inputs
x to outputs y. The Gaussian prior incorporates the analyst’s
knowledge about the underlying function in the data, and is
specified using the GP covariance function.

The covariance function k(xi, xj) can be any function,
provided that it generates a positive definite covariance matrix
�. A common covariance function is the squared exponential
(SE) covariance function

k(xi, xj) = ν2 exp

(
− (xi − xj)2

2l2

)
(7)

where ν and l are hyperparameters that vary the properties
of the covariance function to best suit the training data set.
The SE covariance function assumes that input points that are
numerically close in the input space correspond to outputs
that are more correlated in the output space than outputs
corresponding to input points which are far apart. Variations

in l and ν control the smoothness of the covariance function.
The parameter ν controls the scale of the variations between
points f (xi) and f (xj) in the output space, while l, known
as the length scale, determines the degree of variation in the
input dimension. The squared exponential covariance function
can be extended to many dimensions by introducing individual
length scales for each input dimension.

For example, let the underlying function of the data be
y = f (x) + ε, where ε is a Gaussian white noise term with
variance σ2

n such that ε ∼ N(0, σ2
n). A Gaussian process prior

is put on the range of possible underlying functions f (x)
with covariance function as exemplified in 7 with unknown
hyperparameters. Hence

y1, y2, . . . , yn ∼ N(0, K) (8)

K = � + σ2
nI (9)

where σ2
nI represents the covariance between outputs due to

white noise. I is the n × n identity matrix.
The aim now is to use the set of training data points

{xi, yi}ni=1 to find the posterior distribution of y∗, given input
x∗, that is p(y∗|x∗, xtr, ytr), where {x∗, y∗} denotes an unseen
test data point and xtr and ytr denote the complete set of input
and output training data. Before the posterior distribution of
y∗ is found, the unknown hyperparameters of the covariance
function 7, l, ν, and σ2

n , must be optimized. This can be
performed via a Monte Carlo method or, more typically, via
maximization of the log marginal likelihood

log(p(ytr|xtr)) = −1

2
yT

trK
−1ytr − 1

2
log(|K|) − n

2
log(2π). (10)

Equation 10 is made up of a combination of a data fit term,
1
2 yT

trK
−1ytr, that determines the success of the model in fitting

the output training data, along with a model complexity term
1
2 log(|K|). Maximization of 10 requires the computation of
the derivative of log(p(ytr|xtr)) with respect to each of the
hyperparameters in the covariance function 7. To initialize
the gradient descent optimization in the current application,
the initial values for the hyperparameters are initialized to
the values suggested by Rasmussen [28] and also randomly
initialized several times in an attempt to find a global minimum
solution for the likelihood function. During optimization for
multidimensional covariance functions, dimensions that do
not influence the process being modeled are automatically
assigned longer length scales than variables of influence. This
process is a form of automatic relevance determination.

With the hyperparameters optimized, the GP model is used
to predict the distribution of y∗ for input x∗. The predictive
distribution of y∗, p(y∗|x∗, xtr, ytr), can be shown to be Gaus-
sian [29], with mean and variance

μ(x∗) = k∗K−1ytr (11)

σ2(x∗) = k∗∗ − k∗K−1kT
∗ + σ2

n

respectively, where k∗∗ = k(x∗, x∗) is the autocovariance of
the test input and k∗ = [k(x∗, x1), k(x∗, x2), · · · k(x∗, xn)] is a
vector of covariances between the test and training data points.
The vector k∗K−1 can be seen as a vector of weights that form
a linear combination of the observed outputs ytr to form the
prediction at x∗. The variance on the predicted values, σ2(x∗),
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Fig. 1. Example prediction and 95% confidence intervals (2 × standard
deviation) for a 1-D GP. The variance on the prediction grows with the distance
from observed training points.

is given by the prior variance k∗∗, which is a positive term,
minus the posterior variance k∗K−1kT

∗ which is also positive.
The posterior variance will be inversely proportional to the
distance between the test point and the training points in the
input space, as it depends on k∗, resulting in large variances for
test points that are far from training points, as shown in Fig. 1.

The covariance function can be chosen to include a number
of different components, depending on the prior knowledge
of the physical system being modeled, for example, periodic
functions, linear components, or rational quadratic functions
[27], [29]. The etch rate models in this paper use a covariance
function with one linear component, a noise component, and
a squared exponential component for each dimension. The
squared exponential function is a somewhat intuitive choice for
GPR applications since one might expect covariance between
training outputs to decrease with distance in the input space.
Previous work has shown that the GPR estimation perfor-
mance for the plasma etch data is relatively insensitive to the
covariance function choice [15]. However, the GPR training
procedure may not be robust to the inappropriate covariance
function choice [30].

III. Data Set Description

The models examined in this report are constructed and
tested on a data set collected from a multistep industrial trench
etch process over a period of six months. The data consists of
measurements collected from three sources.

1) Etch process (EP) data consist of 131 variables such
as temperature, pressure, and gas flow rates for each
process step collected directly from the processing tool.
These EP data are reduced to a set of 28 variables by
discarding variables unrelated to the main etch step and
variables with constant values.

2) A PIM records an additional 159 variables for every
wafer, comprising 53 harmonics of electrode current,
voltage, and phase.

TABLE I

Data Sets Available for Modeling

Data Set A Data Set B
Number of wafers 12 133 18 513
Etch rate measurements 529 793
PM cycles 12 18
Measurement frequency 4.4% 4.3%
Inputs available EP, PIM, XR, EP+ EP

3) Etch depth measurements, taken downstream from the
etch process, are available for a small number of wafers.

Summary statistics such as mean and standard deviation are
derived from the time series traces for each variable, and
wafers recorded with erroneous data are detected using a T 2

statistic and removed.
Values for plasma reactance (X) and resistance (R) at

the 53 harmonic frequencies are calculated from the PIM
variables. These reactance and resistance values are henceforth
referred to as “XR” data. To investigate whether VM results
are improved by combining information from multiple sensor
sources, plasma power and impedance values are calculated
from the PIM data for each process step and combined with
the EP variables for modeling. This set of variables is labeled
“EP+” data.

For each virtual metrology scheme, the data points used to
build the models form the training data and the data points
used to check model performance form the test data. Validation
data can be extracted from the training data to enhance the
training procedure for some modeling techniques, e.g., early
stopping during ANN training and selection of the optimum
number of components for PLS models.

The data set is collected from a single etch chamber in the
fabrication plant and consists of correctly recorded EP data
for 18 513 wafers. After removal of wafers with incorrectly
recorded PIM data, only 12 133 wafers remain. For the pur-
poses of this paper, it is useful to form two separate data sets
from these data: Data Set A and Data Set B as described in
Table I. Due to operational constraints, these are the only data
sets available for this VM exercise.

IV. Global Modeling

As described in Section I, global models use all available
training points to learn the behavior of a system. Although
data from designed experiments are often used to train global
models [3], the high value nature of semiconductor processing
means that such experiments can be prohibitively expensive in
terms of wafer scrap and tool down-time. In this paper, only
past production data are used for model training.

To explore global model performance, 30% of the wafers
in Data Set A are put aside as test wafers. Since the input
variables originate from measurements with different scales,
all input and output variables are normalized to have zero mean
and unit variance before modeling. Error metrics are reported
on the estimates using the original scale of the variables.

In an online system, test wafer data chronologically follow
training wafer data. Hence, chamber drift and PM events
can result in models estimating etch rate for operational
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Fig. 2. Etch rate distributions in training and test data sets. The boxes show
the 25th to 75th quartile ranges, whiskers extend to 2.7 σ, and outliers are
marked with circles. Note that the chronological test data is restricted to a
small range of etch rate values.

TABLE II

Global Modeling Results for Chronological Data Set

PLS ANN GPR
Data Source

MAPE R2 MAPE R2 MAPE R2
EP data 1.23 0.25 1.63 0.00 1.29 0.28
EP-SS 1.17 0.28 1.37 0.11 1.19 0.33
PIM 1.21 0.22 2.07 0.15 1.21 0.24
PIM-PCA 1.19 0.25 1.91 0.21 1.25 0.24
PIM-SS 1.35 0.14 1.58 0.13 1.50 0.14
X and R 1.24 0.18 1.41 0.05 1.28 0.17
X and R-PCA 1.38 0.13 1.59 0.03 1.34 0.15
X and R-SS 1.29 0.16 1.45 0.03 1.44 0.16
EP+ 1.22 0.25 1.65 0.21 1.34 0.25

spaces not represented in the training data, with unpredictable
results. To investigate whether model accuracy is improved
when information from the same operational region as that
of the test wafers is included in the model training data sets,
an interleaved data set is used, where the training and test
wafers are interleaved throughout the complete data set. The
interleaved scheme gives some measure of the merit of a more
comprehensive data logging/metrology philosophy.

EP, PIM, XR, and EP+ data are investigated as candidate
input variable combinations to the global models. Stepwise
selection (SS) [31] and PCA [16] are investigated as variable
selection and data reduction techniques for the input variables.
The global modeling results for both chronologically ordered
and interleaved data sets are provided in Tables II and III,
respectively. Results are compared using the mean absolute
percentage error (MAPE) on test data

MAPE =
1

n

n∑
i=1

|ŷi − yi|
|yi| × 100 (12)

where y is the real etch rate, ŷ is the predicted etch rate, and n

is the number of samples. The coefficient of determination, R2,
representing the square of the correlation between y and ŷ, is
also given for the etch rate estimates. Because the VM models
can follow low frequency fluctuations in etch rate, but fail at
accurately estimating smaller high frequency fluctuations, the
larger range of etch rate values contained in the interleaved test
data (see Fig. 2) increases the reported R2 values in Table III.
As a result, unlike MAPE values, R2 values are not directly
comparable between Tables II and III.

Tables II and III do not suggest a particular selection of
inputs that demonstrates significantly more accurate perfor-
mance than other selections across all data sets. Models using
EP data with SS of input variables produce consistently good
results for all of the modeling techniques when the data

TABLE III

Global Modeling Results for Interleaved Data Set

PLS ANN GPR
Data Source

MAPE R2 MAPE R2 MAPE R2
EP data 1.25 0.66 1.26 0.64 1.16 0.68
EP-SS 1.19 0.68 1.41 0.37 1.16 0.68
PIM 1.16 0.70 1.35 0.63 1.11 0.72
PIM-PCA 1.16 0.70 1.27 0.63 1.11 0.73
PIM-SS 1.13 0.71 1.21 0.68 1.10 0.72
X and R 1.19 0.69 1.28 0.65 1.14 0.71
X and R-PCA 1.18 0.68 1.35 0.62 1.18 0.69
X and R-SS 1.20 0.68 1.24 0.68 1.21 0.68
EP+ 1.28 0.64 1.21 0.65 1.17 0.68

is in chronological order but for interleaved data sets, PIM
inputs produce superior performance. ANN models yield the
worst model performance for all input combinations, with PLS
models performing best for chronological data, and GPR mod-
els performing best for interleaved data. GPR modeling is ex-
pected to be advantageous during modeling of the interleaved
data, since estimation is mainly an exercise in interpolation
rather than extrapolation. For chronologically ordered data, the
test data points can arise from very different operating regions
of the input data space, requiring extrapolation of the training
data information. GPR models tend to sit down gracefully
when offered an extrapolation task (a positive feature, one
might argue), whereas linear techniques, such as PLS, will
always give a best linear guess to an extrapolation problem.

It is important to have a measure of the degree of confidence
in the VM estimates, in addition to the estimates themselves
[32]. GPR models naturally permit confidence intervals to be
established. As per 12, if a test point is distant from the
training data points, the output estimate variance is large.
Assuming that previously unseen tool shifts and drifts are
reflected in the VM input variables, when they occur, high
variance values can be used to alert practitioners of unreliable
estimates. Fig. 3 shows 95% confidence intervals for a set of
etch rate estimates using GPR models.

The addition of PIM sensor data to the etch models does
not yield a substantial increase in the accuracy of the global
models, making it difficult to justify the additional sensor cost
for this data set.

On average, models built using the interleaved data sets
result in better MAPE values than the models based on
the chronologically organized data because the training data
set contains information from the same operational space
as the test data. However, such a situation is typically not
realizable in a production environment due to constraints on
the frequency of metrology. Hence, to minimize extrapolation
across a PM event while not requiring unobtainable data from
different operational spaces for model training, a number of lo-
cal modeling methods are considered for etch-rate estimation.

V. Local Modeling

A. Regional PM Cycle Models

The first of the local modeling schemes, regional PM cycle
modeling, is a division of data such that wafers are partitioned
into separate bins depending on their position within each PM
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Fig. 3. Test wafer etch rate estimates, with 95% confidence intervals, from
global GPR model based on stepwise selected EP data for chronologically
ordered data. The high variance of the measured etch rate arises from
unmodeled process variation and this variance is not reflected in the etch rate
estimates because it is not captured by the EP variables. The etch rate variance
remains constant in this figure because the data for the wafers shown are taken
from the same operational space as those used to train the GPR model.

Fig. 4. Regional PM modeling scheme.

cycle. As depicted in Fig. 4, a different VM model is then
constructed for each region of the PM cycle, and the models
are switched for each unseen wafer depending on its PM cycle
position.

The purpose of the regional PM cycle modeling scheme is to
investigate whether similarities exist between the plasma etch
data at different stages in PM cycles. It is conjectured that the
beginning, middle, and end sections of individual maintenance
cycles may be more similar to the corresponding sections
in other PM cycles than to the other sections of the same
cycle. Supporting this hypothesis are the facts that several
of the measurements recorded from the etch chamber exhibit
repeatable patterns over the course of each PM cycle, and it is
known that chambers undergo a conditioning process as wafers
are processed throughout each PM cycle.

The performance of the regional PM cycle models is tested
using Data Set A to allow performance comparisons between
models built using different input combinations. The test data
set (30% of data points) occurs chronologically later than the
training (50%) and validation (20%) data.

Fig. 5. MAPE for the regional PM cycle modeling scheme using EP data
with varying numbers of regional models per PM cycle.

The number of models per PM cycle is varied from one to
ten in order to determine an appropriate level of granularity
and to highlight the effect of the PM cycle partitioning
technique on estimation accuracy. Fig. 5 shows the MAPE
performance for PLS, ANN, and GPR-based models. The first
point for each model type is equivalent to the global modeling
scheme seen in Section IV as it uses one model to cover all
PM stages.

Fig. 5 illustrates that regional PM cycle models do not
increase the estimation accuracy of the virtual metrology
models using EP data as input variables. Rather, accuracy
worsens with increasing numbers of models per PM cycle.
Similar results are found for different input variable selections
[33], [34]. This degradation in performance is attributed to a
lack of exploitable commonality between similar sections of
different PM cycles in the etch rate data set. Furthermore, there
is a reduction in the number of training points available for
each model as the number of models per PM cycle increases.

B. PM Cycle Clustering

This section investigates whether similarities between dif-
ferent PM cycles can be found and harnessed to increase etch
rate estimation accuracy. Analysis of Data Set A, where both
EP and PIM data are available, reveals four distinct clusters
of self-similar data points. The clusters are visible in Fig. 6
by performing a PCA on the EP and XR data separately and
plotting the first two principal components of the XR data
against the first principal component of the EP data.

Each cluster contains a number of different PM cycles with
similar EP and XR data. The existence of these clusters in the
data set suggests that the etch process moves between a finite
number of operating points over the course of the complete
data set. Similar modal behavior is seen in a stack etch process
by He et al [35], and Zeng and Spanos [36] also reported
on clustered behavior in an etch process where the clusters
were associated with different etch chambers. In our work,
changes in cluster, indicating changes of operating space, are
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Fig. 6. First principal component of EP data plotted against the first two
PCs of XR data. Data from one PM cycle from each cluster is chosen as test
data.

brought about by PM events on the same chamber. An analysis
of variance of the etch rates in each cluster rejects the null
hypothesis that the mean etch rates in each cluster are equal
at the α = 0.01 significance level.

Specialized models for each cluster are tested to examine
whether they can estimate etch rate more accurately than
global models trained using information from all clusters. To
test the performance of such cluster-based modeling, one PM
cycle of wafers is extracted from each cluster to be used as
unseen test data during model tests as shown in Fig. 6. To
compare the cluster performance to a global-type scenario, one
model is trained using the training data from all clusters, and
the same unseen test data is used to measure its performance.
Because Cluster 4 comprises a single PM cycle, no separate
training and test data exists for Cluster 4 model creation. The
data from Cluster 4 provide an opportunity to explore VM
strategies during modes of chamber operation not previously
captured by other cluster models.

PLS, ANN, and GPR models are examined as candidate
modeling techniques for cluster models. EP, PIM, XR and
EP+ data are investigated as input variable options. Stepwise
selection is applied to the input variables before GPR and
ANN modeling to reduce the number of input variables and
improve performance. Because PLS first projects the incoming
data onto its latent variable space as described in Section II-A,
it is capable of modeling the cluster data sets that have more
input variables than training samples. Results are presented in
Table IV.

In tests completed for Cluster 4, for which there is only one
PM cycle, no cluster model is capable of accurately estimating
etch rate; the global models yield the best estimates. Hence,
when the etch tool operates in a previously unseen operational
space, measurements of etch depth can be taken with greater
frequency than before to allow new cluster model identification
and to ensure the process is operating within specifications.

By way of an example, Fig. 7 shows the estimates from
the cluster and global GPR models on the test data points.
Improvements in accuracy can be seen for Cluster 2 in Fig. 7
for the cluster models. Cluster models are useful only in the

TABLE IV

Global and Cluster Model for All Data Types

Global Model Cluster Model
Data Model

MAPE R2 MAPE R2
PLS 1.79 0.53 1.60 0.52

EP ANN 2.08 0.48 1.74 0.42
GPR 1.77 0.52 1.62 0.52
PLS 1.57 0.50 1.59 0.49

PIM ANN 1.62 0.50 1.78 0.41
GPR 1.63 0.47 1.77 0.44
PLS 1.65 0.52 1.59 0.49

XR ANN 1.76 0.42 1.96 0.32
GPR 1.69 0.46 1.58 0.52
PLS 1.97 0.51 1.71 0.51

EP+ ANN 1.65 0.49 1.86 0.45
GPR 1.77 0.52 1.70 0.50

The global model results differ from Tables II and III because the global
model here is trained using data from every cluster in the data set and then
tested using the same data as the cluster models.

Fig. 7. Example etch rate estimates from global and clustered models using
EP data as input.

cluster over which they are trained, while the global model
can provide meaningful estimates over the full test data set.

In Table IV, cluster models yield better estimation accuracy
for half of the model types and input selections, with superior
global models being those trained using PIM data, and those
using neural networks. The best overall MAPE is reported
for the global PLS model using PIM data. Due to the lack
of consistent results and the considerable extra complexity of
cluster model implementation, we cannot definitively conclude
that cluster modeling is superior to global modeling for this
data set. A larger set of historical data is required to fully
assess the capability of the clustering technique, but the
potential benefits are demonstrated here. In the case of more
data being available, new clusters are expected to be generated,
or the wafer data is expected to return to an existing cluster,
allowing model reuse.

C. Windowed Models

Time-windowed models can be used to maintain model
accuracy in time-varying systems. For example, Qin [37]
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TABLE V

Comparison of Model Training Times (in S)

Window Length PLS ANN GPR
70 0.03 1.90 26.27
150 0.08 4.24 121.85
250 0.13 6.97 320.90

applied a moving window PLS scheme to a catalytic reformer.
Khan et al. [3] described a virtual metrology and run-to-run
control strategy that uses a continually updating windowed
PLS model in their simulations of a semiconductor manufac-
turing fabrication environment.

PLS, ANN, and GPR-based models are compared as can-
didate modeling techniques for windowed modeling of the
plasma etch data. Data Set B is used for windowed model
analysis since the data set is almost fully contiguous, with
only one substantial gap where wafer records are not available.
The data set is kept in a chronological order throughout
the experiments, providing a realistic representation of data
produced by an etch tool during processing. The use of Data
Set B restricts the analysis to using EP data only during
modeling (see Table I). The models are applied to the data
set using window lengths between 30 and 300 samples. The
window length describes the number of past wafers used to
train VM models that are used to estimate the etch rates
of wafers subsequently processed. When a new etch rate
measurement becomes available, the window is advanced to
include the new measurement and a new model is created.
Global models using similar numbers of wafers fail to produce
accurate etch rate estimates over the complete data set because
they fail to maintain their validity in new operating spaces [38].

Training times for PLS models are faster than those of ANN
and GPR models because the latter two techniques require the
use of optimization techniques and multiple initializations dur-
ing training. Table V shows model training times (in seconds)
for each technique, using a computer with a 2.6 GHz dual-core
processor and 2 GB RAM. Although a second-order optimiza-
tion technique is used during ANN model training, first-order
gradient descent is used to optimize the GPR hyperparameters.
Hence, although GPR training arguably involves a more com-
plex optimization task than ANN training, the GPR training
times may be improved through the use of more complex
optimization techniques. However, the estimation times for all
model types are typically less than 1 s. The etch processing
time for each wafer is approximately 5 min, and there is a
metrology delay of several hours for etch rate measurements.
Hence, according to Table V, which indicates that models can
be completely retrained in the order of seconds, any of the
three modeling techniques investigated are suitable for real-
time implementation of a window-based VM system.

To increase windowed modeling accuracy, the most recently
measured value of etch rate is included as an input vari-
able to the models. PLS model accuracy is enhanced via a
maintenance-dependent sample weighting scheme as described
in [38]. Stepwise selection of input variables is performed on
each window before modeling for both ANN and GPR models.

Fig. 8. Windowed model MAPE performance for varying window length.

Fig. 9. Windowed model R2 values for varying window length.

The error performance for each modeling technique is shown
in Figs. 8 and 9 for the range of window lengths investigated.

The R2 and MAPE values for the windowed models are
significantly better than the global models values. Considering
that a much smaller amount of training data is used during
windowed model training, and that the models can perform
accurately over numerous PM events in the test set, windowed
models are preferable. The GPR-based windowed models
outperform windowed models based on PLS and ANNs,
especially for smaller window sizes. For small window sizes,
ANN models perform poorly due to a lack of training data.
Increasing the window size improves ANN model perfor-
mance, but the GPR models still follow the etch rate more
successfully.

The best results for the windowed GPR models are recorded
for a window length of 70 wafers. This model estimated the
actual etch rate for the 493 unseen test wafers (that span
over 11 000 processed but unmeasured wafers) with a MAPE
of 1.15% and R2 of 0.75. The etch rate estimates, confidence
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Fig. 10. Best etch rate estimates using windowed GPR model with window
length 70.

TABLE VI

Comparison of MAPE Achieved by All Modeling Techniques

and Approaches for EP Data

PLS ANN GPR
Chronological 1.23 1.63 1.29Global modeling
Interleaved 1.25 1.26 1.16
Regional 1.43 2.01 1.57

Local modeling Clustering 1.60 1.74 1.62
Windowed 1.2 1.23 1.14

limits, and actual etch rates for a section of the test data set
are shown in Fig. 10.

While the windowed GPR model follows the overall trend
of the etch rate variations, it struggles to accurately model
high frequency fluctuations in the data. These high frequency
fluctuations do not appear to be reflected in the recorded
input variables, and may arise from other processes in the
manufacturing line, or unmeasured disturbances in incoming
material. However, the 95% confidence limits produced using
the GPR models, which vary over the data set, encapsulate
a large enough range to allow for the vast majority of these
variations as shown in Fig. 10.

VI. Conclusion

The results in this paper reflect the reality of using pro-
duction data, with a limited number of measured wafers,
to develop VM models. Particular difficulties attach to the
utilization of VM models across PM boundaries, and a variety
of local modeling approaches are explored to minimize this
problem. However, disaggregation of production data for local
model development results in small local data sets and this
creates problems for a number of modeling paradigms, partic-
ularly ANNs. In contrast, GPR models work well with small
data sets, and produce an accompanying variance value for
each etch rate estimate. Table VI compares all of the modeling
techniques and data disaggregation approaches explored in this
paper for the EP data set.

Concerning the performance of various local modeling
approaches, the division of PM cycles into separate sections
for modeling is not beneficial, while the clustering of PM
cycles with similar characteristics can improve marginally on
the accuracy of models with global scope for some input
variable selections. The use of a wafer window scheme (with
GPR modeling) produces the best estimation accuracy of etch
rate on the data set investigated.
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