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Abstract: Plasma etching is a semiconductor manufacturing process during which material is
removed from the surface of silicon wafers using gases in plasma form. A host of chemical and
electrical complexities make the etch process notoriously difficult to model and troublesome
to control. This work demonstrates the use of a real-time model predictive control scheme to
maintain a consistent plasma electron density in the presence of disturbances to the ground
path of the chamber. The electron density is estimated in real time using a virtual metrology
model based on plasma impedance measurements. Recursive least squares is used to update the
controller model parameters in real time to achieve satisfactory control of electron density over

a wide operating space.

1. INTRODUCTION

Plasma etch is a fundamental process used in semicon-
ductor manufacture in which etchant gases are excited
to plasma form and used to remove precise amounts of
material from exposed surfaces of silicon wafers. Although
considerable research has been undertaken in the area of
estimation and control of etch processes (Ringwood et al.
(2010)), plasma etch processes are still typically run in
semiconductor fabrication plants in an “open-loop” fash-
ion, where etch recipes are specified in terms of process in-
puts such as powers, gas flows, and pressures, in quantities
that are known to produce the desired etch performance.
However, specification of etch recipes in this manner is
prone to error due to three principal causes:

e Chamber performance changes over time as the cham-
ber becomes conditioned by repeated etch operations.

e Chamber maintenance operations, carried out at spe-
cific intervals, lead to unpredictable shifts in etch
performance as parts are replaced and/or cleaned.

e The behaviour of process hardware such as mass flow
controllers (MFCs) and matching networks drifts over
time.

The resulting unpredictable changes in etch performance
prevent reliable process reproducibility, and statistical
process control (SPC) is typically used to monitor the
etch process (May and Spanos (2006)). A more ambitious
approach is to specify etch recipes in terms of plasma
variables such as electron density, electron temperatures,
radical densities, and ion fluxes to the wafer surface.

Real-time control of plasma variables is required to achieve
such recipe specification, enabling precise control of the
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etch process, and reducing sensitivity to process drift and
disturbances. For example, Hankinson et al. (1997) regu-
late etch rate through real-time control of fluorine concen-
tration and wafer bias voltage by manipulating chamber
power and pressure. Lin et al. (2009) control electron
density measured using a transmission line microstrip mi-
crowave interferometer to eliminate the “first-wafer effect”
from experiments, that is the tendency of the first wafer
from each lot processed to exhibit peculiarities in etch
performance. Klimecky et al. (2003) demonstrate real-
time electron density control to reduce etch rate variances
without affecting the etch profiles of product wafers. Direct
measurements of the plasma variables were used in the
control schemes.

Real-time measurement of controlled variables often re-
quires bulky, expensive, or invasive equipment. Virtual
metrology (VM) is the use of mathematical models to
estimate variables that may be difficult or expensive to
measure using readily available process information. In
this work, a VM system is employed to estimate plasma
electron density in real time using readily available plasma
impedance data. Hence, no invasive sensors that perturb
the etch process are required, and the VM model is used
to provide electron density estimates for feed-back control
purposes.

A model predictive control algorithm, predictive functional
control (PFC), is employed to control the electron density,
and the internal model of the controller is updated in
real time using recursive least squares (RLS) regression.
As shown in Fig. 1, the process inputs and the estimated
process outputs from the VM model are used to recursively
update the PFC internal model parameters.

Variations in the ground path impedance (the electrical
path between the chamber electrode and ground) are in-
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Fig. 1. Real-time model identification using RLS.

troduced as disturbances to the plasma chamber. Step
changes in the ground impedance are postulated to reflect
the type of change that can occur when chamber com-
ponents such as electrodes and ceramics are replaced or
cleaned during maintenance events.

The aim of this work is to regulate the plasma electron
density without the use of additional invasive sensors
in the plasma chamber. The ability to compensate for
disturbances caused by maintenance operations has the
potential to reduce etch rate variability, wafer scrap, and
tool downtime in manufacturing environments.

2. EXPERIMENTAL EQUIPMENT

Fig. 2 shows the apparatus used to implement the real
time virtual metrology and control system.
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Fig. 2. Virtual metrology and control hardware.

2.1 Plasma etch chamber

Plasma is generated in a capacitively-coupled top-powered
parallel-plate plasma etch chamber. Between 0 and 625 W
of RF power at 13.56 MHz is delivered to the topmost
chamber electrode from an RF generator. The amount of
delivered power is specified via a 0 — 10 V reference signal
generated using a control computer using DAC hardware.

Chamber pressure is controlled to specified set points by
means of a gate valve between the etch chamber and the
vacuum turbo pump.

The bottom electrode in the etch chamber is grounded
through a modified match unit such that the position of
the matching inductor can be varied manually, effecting a
total ground impedance of between 0 — 25 2. Variations
in this path act as disturbance signal to the plasma in the
chamber.

2.2 PIM sensors

A plasma impedance monitor (PIM) is an electronic sensor
that is installed between the matching network and the
plasma electrodes. The PIM sensor provides information
on the current, voltage and phase of the waveforms on the
power supply circuitry. Information on the fundamental
frequency of 13.56 MHz and up to 52 harmonics of this
frequency is recorded. Two PIM sensors are used. One PIM
is installed on the powered electrode of the chamber, and
provides information on the applied RF power. The second
sensor records information about the path to ground from
the chamber. Analog output channels on each PIM sensor
provide real-time measurements for control.

2.8 Hairpin resonator probe

The electron density in the plasma etch chamber is de-
termined using a microwave hairpin resonator, or simply
hairpin probe. Introduced by Stenzel Stenzel (1976) in
the mid 1970’s, a hairpin probe is an open-ended quarter
wavelength transmission line whose resonant frequency is
related the dielectric constant of the medium that sur-
rounds it. Figure 3 shows a schematic of a hairpin probe.

Ceramic paste / fitting ~ 20mm

B ——
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Fig. 3. Microwave resonator hairpin probe.

The plasma electron density is related to the frequency dif-
ference between the hairpin resonances with and without

the plasma, , ,
fr — fO
TeT o8 @)
where n, x 101 cm ™3 is the electron density, and f, and fy
are the resonant frequencies (in gigahertz) of the hairpin
with and without the plasma respectively (Piejak et al.
(2004)).

3. VIRTUAL METROLOGY OF ELECTRON
DENSITY

The microwave probe is an invasive measurement of
plasma electron density that presents a number of disad-
vantages if used for control:
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Low High
Chamber power (W) 200 600
Ground Impedance (2) 0 22
Pressure (mTorr) 200 300
Table 1. Design of experiment inputs for VM
model with varying pressure.

(1) Production wafers cannot be etched while the probe
is inserted in the chamber as the plasma is perturbed
around the probe body.

(2) The sampling frequency of the probe is limited to 2
Hz due to the time required to download and process
the reflected current waveform from the oscilloscope.

As indicated in Section 1, virtual metrology (VM) is used
to estimate the electron density for control purposes. The
dynamics of the etch chamber system are virtually instan-
taneous, and as such, static VM models are employed.

The VM models are created empirically from data col-
lected from the chamber. The chamber parameters are
varied over the ranges specified in Table 1 while accom-
panying electron density measurements are recorded for
model training purposes. Training and test data sets are
collected for creating the VM models and testing their
generalisation performance, respectively. The input vari-
ables used by the VM models are measurements taken
from the upper PIM sensor, comprising the fundamental
values of the powered electrode current, voltage, phase,
and the fundamental values of the plasma impedance,
reactance, resistance, and power. The VM input variables
are measured using an ADC connected to the PIM sensors,
and can be sampled at a higher rate than the electron
density probe. For the experiments in this work, the analog
sampling rate (and hence the VM measurement rate) is set
to 10 Hz to allow for noise averaging during each sample.

Multiple linear regression (MLR) (Montgomery et al.
(2001)), artificial neural networks (ANNs) (Haykin (1999)),
and Gaussian process regression (GPR) (Rasmussen (1996))
models are examined as candidate empirical modelling
techniques for VM. The ANNs used have a single hidden
layer that is varied in size from one to fifteen neurons
and randomly initialised five times during model training.
The GPR models use a squared exponential covariance
function. The modelling results are summarised in Table
2 where an ANN model is the most accurate VM model
over the unseen test data. MLR models perform worst due
to the non-linear relationship that exists between the VM
input variables and the electron density. The performances
of the ANN and GPR models are quite similar, with
the ANN models performing better on unseen test data.
Offsets between the estimated and real values of electron
density are observed for some system operating points.
However, these offsets are rarely greater than 1 x 109 cm ™3
(~ 2 — 3% absolute error), which is deemed an acceptable
level of error for the experimental control work.

The VM scheme introduces a delay in the control system.
VM estimations are delayed by a constant value of 0.5 s
compared to the actual electron density as a result of the
operation of the internal circuitry in the PIM sensors. This
time delay must be catered for in the control paradigm
implemented.

Training MSE  Test MSE  Max Test Error

MLR 2.612 2.512 5.943
ANN 1.004 0.870 3.632
GPR 0.675 1.210 3.345

Table 2. VM estimation results. R? values for
all models are greater than 0.99.

4. PREDICTIVE FUNCTIONAL CONTROL
4.1 Motivation

Model predictive control (MPC) or model-based predictive
control (MBPC) was first employed in the 1970’s the
defence and petroleum industries. Predictive functional
control (PFC) is differentiated from the other forms of
MPC in that the internal models used are independent
internal models that depend solely on the process input.
Furthermore, the manipulated variable is constructed on a
set of basis function, typically a polynomial basis (Richalet
and Donovan (2009)).

4.2 Internal model

The “internal model” is a model of the plant used by a
predictive controller that is capable of predicting future
process outputs. The internal model is not restricted to
a particular form and can be formulated as a transfer
function, state-space, step-response, black-box model etc.
Consider a first-order process with a gain K, and a time
constant 7, subject to an input u. The plant is represented
by the following difference equation:

Yp(k) = apyp(k — 1) + b, Kpu(k — 1), (2)

where a, = e;T, bp = 1—a,, and T is the sampling time.
The plant can be modelled by a first order system with a
gain K,, and a time constant 7, as

Ym (k) = amym(k — 1) + b Kpu(k — 1), (3)
where a,, = eTTnS, bym = 1 — a,,. Equation 3 describes
an independent model that calculates the output y,,
using only the known measured process inputs and past
model outputs. Because the process may be subjected to
unknown disturbances and the plant model will not be
perfect, y, # ym. However, y, and y, will evolve in
parallel, and the model is used to calculate increments of
the process output rather than the absolute response of
the process subjected to a particular input (Richalet and
Donovan (2009)).

The prediction of the process response using only the
process model from the instant k£ = 0 to a future time k +
H, where H is an integer number of samples, consists of the
free solution y(k)all and the forced solution K,,u(k)(1 —

a'l). By superposition, the full solution y(k + H) is the
sum of the free and the forced responses.

4.8 Reference trajectory

The desired future behaviour of the controlled variable
is the “reference trajectory”. The reference trajectory is
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initialised on the current process output y,(k), and defines
the path taken by the controlled variable to the current set
point S(k).

The “coincidence horizon” is the set of points in the future
where the process and the model outputs should be equal.
For the sake of simplicity, only one coincidence point H is
considered. Typically, an exponential reference trajectory
is defined such that the error signal at a time k + H is

S —yp(k+ H) = e(k+ H) = e(k)\", (4)

where S is a constant set point, A = e%, and 7, is
the required closed-loop time constant of the controlled
system. The controller is tuned by adjusting the value of
7 which is easily interpretable.

The desired process output increment at the coincidence
point Ap(k + H) is given by

Ap(k + H) + e(k + H) = e(k) (5)

Hence
Ap(k + H) = —e(k)AT + e(k) = (S = y,(k))(1 = AT)
(6)

At each sample time k, the values for Ap are computed,
and the first value is applied to the plant and model. At
the next sample time, k£ + 1, the procedure is repeated,
resulting in a new reference trajectory, and in essence
creating a sliding horizon.

4.4 Calculation of controlled variable

The future manipulated variable u(k) is structured around
a set of basis functions that are chosen according to the
nature of the process and set point variations:

N—-1
ulk +d) =Y uFi(i), 0<i < H. (7)
j=0

Thus the manipulated variable is expressed as a weighted
sum of N basis functions. PFC uses a set of basis functions
that consist of a polynomial basis, i.e., F;(i) = i’. In the
elementary case, and the case that applies here, the basis
functions reduce to N = 1, Fy(i) = i% = 1.

As seen before Ap(k+H) = (S —y,(k))(1—=NT). Am(k+
H), Am is the model increment, is given by

Am(k+ H) = gk + H) = ym(K),  (8)
Ak + H) = ym(K)all + Kppu(k)(1 = all) =y (k). (9)
The equation Ay, (k + H) = Ay, (k + H) is fulfilled by
(S—yp(k))(1-A") = ym(k)afiﬂLKmU(k)(l—aﬁ)—ym(lk),
which can be solved for the manipulated variable u(k)( K
() — 5NN — (k) + ()
K, (1—afl)

(11)

This is the fundamental PFC control equation in its most
elementary form (Richalet and Donovan (2009)).

4.5 Systems with a pure time delay

For the work described here, the 0.5 s delay in the VM
estimates acts as a pure time delay in the system. Predic-

tive controllers can take this time delay into account. The
delay is not included in the PFC internal process model so
that, ideally for a delay of d samples, y,(k) = ym(k — d),
and Ypredict(k+d) = yp(k+d) = yn, (k). Hence, the change
in the process output between times k and k + d is equal
to the change of the model output between times k — d
and k, yielding

Yp(k + d) — yp(k) = ym (k) — ym(k — d)
which rearranges to
Ypredict(k + d) = yp(k + d) = yp(k) + ym (k) — ym (k —(d)-)

13

Hence, the reference trajectory is not initialised on the
current of value y,,(k), but on the predicted value of
yp(k + d) in order to anticipate its response. The control
equation given in (11) is still valid by replacing y, (k) with
the expression for ypredict (k + d) in (13).

(12)

Many processes in production industries can be approxi-
mated by a first order system model, and in many PFC
control applications, an exponential reference trajectory
is used with a single coincidence horizon point H = 1
and a zero order basis function. Hence the main tuning
parameter becomes the desired CLRT which is specified
by 7.

4.6 Plasma chamber model

The relationship between the power delivered to the cham-
ber electrode and the plasma electron density is approxi-
mately linear for constant values of ground impedance and
pressure as indicated by Fig. 4. Considerable changes in
system gain occur when the chamber pressure is changed
and for each pressure set point, smaller changes in gain
are observed as the ground impedance of the chamber is
altered.
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Fig. 4. Electron density response to power at different
pressures.

The system, at a specified pressure, can be approximated
as a pure gain K,,, with negligible dynamics and a delay
term such that

Gn(s) = Ke 7 (14)

where 74 = dT; is the VM delay in seconds. No dynamics
are used in this model because the relationship between
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power and electron density is instantaneous. The lack of
dynamics in the system model simplifies the PFC control
T,

equations since a,, = e = 0 and the system model
equation without delay will consist of the forced solution
alone. Equation (11) reduces to

() = BN by

. (15)

Although MPC-based controllers can control a system
with zero steady state error even in the presence of model
mismatch (Rossiter and Richalet (2001)), the model will
incorrectly estimate the required process input increments
at each sample with the result that the closed-loop time
constant will not match the desired time constant 7,. To
achieve accurate control over a range of pressures, and
hence a range of system gains, recursive least squares is
used to update the model parameters in real time.

5. REAL-TIME MODEL IDENTIFICATION

Due to the relatively simple form of the system model
in use, the model update can be constructed as a linear
regression problem. At each sample moment k, the electron
density VM measurement 7. is given by

fe(k) = Kpp(k — d) 4 cm + § (16)
where K, is the process gain, p is the power applied to the
chamber, d is the system delay in sample periods, ¢, is
an offset term, and £ is zero-mean Gaussian white noise.
This linear equation has a non-zero n.-intercept, included

in the model as an input disturbance. For samples k to
k+ N,

fe (k) pk—d) 1
fe(k+1) _ plk—d+1) 1 |:Km:| an
m(klN) p(kfiiJrN) o

Equation (17) is of the form y = X3 which can be
solved using MLR techniques. Rather than storing a fixed
window of inputs and outputs and recalculating new values
for K,, and c at each sample, the well-known recursive
least squares (RLS) technique can be used to update

/é = [chm]T

The RLS algorithm can be implemented in five steps at
each sample time, k+1 (see Wellstead and Zarrop (1991)):

(1) Form row vector X (k + 1), made up of the latest
measurement from the process [p(k — d + 1) 1].
(2) Calculate the current error e(k) using

at each sample.

e(k+1) =ne(k+1)— X(k+1)B(k). (18)
(3) Calculate the covariance matrix P(k + 1)
X(k+1)TX(k+1)P(k)

P(k+1) =P(k) |I -

(19)
where 0 < Apps < 1 is a forgetting factor.
(4) Update the model parameters,

Blk+1) =8k +Pk+1)X(k+1)Te(k+1). (20)
(5) Return to step 1.

6. CONTROL RESULTS

Satisfactory control is achieved at a constant pressure
without the inclusion of the RLS correction for the PFC
internal model. Experimental results for set point tracking,
and set point tracking in the presence of disturbances in
ground impedance, are shown in Figs. 5 and 6 respectively.
While the controller sample time is Ts = 0.1 s, the
electron density is measured separately at sample rate
Ts = 0.5 s. The ANN VM model accurately estimates
the electron density in real time. Although the specified
closed-loop time constant for both experiments is 7. = 1
s, the system actually responds with a time constant of
approximately 1.6 s due to a mismatch between K,, and
K.

T - - ™
—————— Ground impedance

40 b----- — === Actual ne

———— Virtual n,

------ ne set point

ne x 109 (cm™3)
Do
(<1}
e
Lower impedance (£2)

20 30 40 50 60 70 8 90
Time (s)
Fig. 5. PFC control of electron density with 75 = 0.1 s,
7. =1 =1 s, at constant pressure.
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,,,,,,,,,,,,,,,,,,,
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ne x 10° (cm™3)
oo
()
Lower impedance ()

(<3

Time (s)
Fig. 6. PFC control of electron density with 75 = 0.1 s,
7. = 1 8, at a constant pressure in the presence of
unmeasured disturbances in ground impedance.

To demonstrate the effectiveness of the RLS model update,
Fig. 7 shows the control achieved by the PFC controller

Arrs + X (k+ 1)P(k)X (k+ 1)T | using a constant value of K,, over a range of pressures.

K,, is set to a value that suits higher pressure regions,

and the plasma chamber undergoes two step changes
in pressure and ground impedance, as indicated by the
annotations on the figure. The model output is higher
than the plant estimated output for the duration of the
experiment due to the model/plant gain mismatch. Slower
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transients than those specified by 7, are observed. The
effect of the model/plant gain mismatch lessens as the
chamber pressure is increased and the plant gain rises.
Fig. 8 demonstrates the effect of the RLS adaptive scheme.
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Fig. 7. Effect of pressure disturbances on PFC controller
performance.

The model gain is adapted to suit the plant input and
estimated output at each sample point. A relatively slow
forgetting term of Agps = 0.995 is employed so that the
model updates do not react to noise in the system, but
adapt slowly as samples become available. The transient
responses, after model convergence, match the required
time constant 7,, much more accurately than those shown
in Fig. 7. However, directly after system changes before
the model parameters have been updated to the correct
values, the system can suffer from overshoot in cases where
K,, < K, and slow responses when K,, > K.
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Fig. 8. PFC results using internal model realigned by RLS
with pressure changes.

7. CONCLUSIONS AND FUTURE WORK

Control of plasma electron density is achieved using a
first-order PFC implementation, achieving relatively fast
set point tracking (settling times of approximately 1 sec-
ond) without overshoot and excellent disturbance rejection

properties. The control system is expanded to operate
across a large operating range by adapting the PFC in-
ternal model parameters using RLS.

The electron density VM and control scheme is currently
being expanded to operate during wafer etch operations
using production gases and a range of chamber conditions.
Experiments to construct VM models in the presence of
layered silicon wafers are being carried out. When com-
pleted, the control scheme will reduce process variability
caused by chamber maintenance operations and drift by
adjusting recipe power settings to achieve a desired plasma
electron density, thereby enabling more reliable and con-
sistent etch performance.
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